Identification of Tetranectin-Targeting Monoclonal Antibodies to Treat Potentially Lethal Sepsis

Chen, W.; Qiang, X.; Wang, Y.; Zhu, S.; Li, J.; Babaev, A.; Yang, H.; Gong, J.; Becker, L.; Wang, P.; Tracey, K. J.; Wang, H., Identification of tetranectin-targeting monoclonal antibodies to treat potentially lethal sepsis. Sci Transl Med 2020, 12 (539). doi: 10.1126/scitranslmed.aaz3833

Interaction Type: Protein-Protein

Abstract: For the clinical management of sepsis, antibody-based strategies have only been attempted to antagonize proinflammatory cytokines but not yet been tried to target harmless proteins that may interact with these pathogenic mediators. Here, we report an antibody strategy to intervene in the harmful interaction between tetranectin (TN) and a late-acting sepsis mediator, high-mobility group box 1 (HMGB1), in preclinical settings. We found that TN could bind HMGB1 to reciprocally enhance their endocytosis, thereby inducing macrophage pyroptosis and consequent release of lactate dehydrogenase and apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain. The genetic depletion of TN expression or supplementation of exogenous TN protein at subphysiological doses distinctly affected the outcomes of potentially lethal sepsis, revealing a previously underappreciated beneficial role of TN in sepsis. Furthermore, the administration of domain-specific polyclonal and monoclonal antibodies effectively inhibited TN/HMGB1 interaction and endocytosis and attenuated the sepsis induced TN depletion and tissue injury, thereby rescuing animals from lethal sepsis. Our findings point to a possibility of developing antibody strategies to prevent harmful interactions between harmless proteins and pathogenic mediators of human diseases.

Read Publication